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The Stokes flow problem is concerned with fluid motion about an obstacle when 
the motion is such that inertial effects can be neglected. This problem is con- 
sidered here for the case in which the obstacle (or configuration of obstacles) has 
an axis of symmetry, and the flow at distant points is uniform and parallel to 
this axis. The differential equation for the stream function 4 then assumes the 
form PI$ = 0, where L-, is the operator which occurs in axially symmetric 
flows of the incompressible ideal fluid. This is a particular case of the fundamental 
operator of A. Weinstein’s generalized axially symmetric potential theory. Using 
the results of this theory and theorems regarding representations of the solutions 
of repeated operator equations, the authors (1) give a general expression for the 
drag of an axially symmetric configuration in Stokes flow, and (2) indicate a 
procedure for the determination of the stream function. The stream function is 
found for the particular case a€ the lens-shaped body. 

Explicit calculation of the drag is difficult for the general lens, without recourse 
to numerical procedures, but is relatively easy in the case of the hemispherical 
cup. As examples illustrative of their procedures, the authors briefly consider 
three Stokes flow problems whose solutions have been given previously. 

1. Introduction 
The determination of the isothermal flow of an incompressible, viscous fluid 

about an impermeable body immersed therein requires the solution of the Navier- 
Stokes equations and the equation of continuity subject to the condition that the 
velocity of flow coincide with that of the external boundary of the body at each 
of its points. The non-linearity of the Navier-Stokes equations renders the 
solution of this problem extremely difficult, and only a relatively small number of 
exact solutions of rather specialized character are known (Dryden et al. 1932; 
Lamb 1932). In  many instances, however, the flow is such that plausible 
simplifying assumptions regarding its character (in certain regions, at least) 
can be made which result in a less refractory mathematical problem. A large part 
of the theory of viscous flows consists in the discussion of problems obtained 
in this manner. 

The oldest problem of this type is the so-called ‘Stokes flow’ problem. It is 
defined by the assumption that inertial effects are negligible in comparison with 
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those of viscosity, or, more precisely, that the Reynolds number R of the flow is 
very small. This situation obtains when either the characteristic flow velocity or 
body dimension (or both) appearing in R is suitably small or the kinematic 
viscosity is large. Sir George Stokes (1850), in the course of treating the steady 
motion of a sphere in a viscous liquid, appears to have been the first to omit the 
inertial terms in the equations of motion. ‘Oberbeck (1876) solved the Stokes flow 
problem for an ellipsoid immersed in a uniform flow, and also treated the special 
cases of a circular disk broadside and edgewise to the undisturbed flow. More 
recently, Ray (1936), by a more direct method, has obtained the solution of this 
circular disk problem in a different form. His solution yields the same drag as was 
obtained by Oberbeck. The problem of a sphere moving slowly near a plane wall 
was solved by Lorentz (1897), while that of a sphere falling along the axis of a 
vertical tube has been discussed by Ladenburg (1907). 

A number of two-dimensional flows of Stokes type have also been treated. 
Berry & Swain (1923) have considered the elliptic cylinder immersed in an 
infinite body of fluid, as well as the special cases of the circular cylinder and the 
infinitely thin flat plate athwart and edgewise to the flow. The speed of flow 
becomes logarithmically infinite at points infinitely far from any of these bodies. 
Dean has devoted a series of papers (1944; others are referenced there) to the 
Stokes flow past protuberances of various shapes in otherwise flat walls, the fluid 
filling the half-space lying on that side of the wall which bears the protuberance. 
Here again the speed becomes infinite at an infinite distance from the wall. Dean 
(1936) has also considered the Stokes flow problem for a fluid which emerges 
uniformly from an aperture in a plane wall into a semi-infinite body of fluid. In 
this case the speed of flow vanishes at  infinity. Green (1944) has found a Stokes 
flow for the region bounded by converging plane walls and for the region lying 
between two branches of a hyperbola. Again the speed vanishes at infinity. 
Further discussion and bibliography on Stokes flows may be found in Dryden 
et al. (1932) and Lamb (1932). 

It seems reasonable to doubt the uniqueness of the Berry-Swain solutions, 
since it appears not unlikely that there may exist a Stokes flow about the cylinder 
which is uniform at infinity, in view of the Stokes and Oberbeck results for the 
sphere and ellipsoid. It has been generally accepted, however, since the time of 
Stokes, that such is not the case, Stokes himself giving a physical argument for 
this apparent anomaly (1850). The question has recently been settled once for all 
by Finn & No11 (1957), who have given a. careful proof of the fact that the only 
Stokes flow uniform at infinity about a cylinder whose boundary is composed of 
a finite number of piecewise smooth non-intersecting simple closed curves lying 
in the finite plane is the state of rest. The boundaries in the other two-dimen- 
sional problems mentioned above do not lie entirely in the finite plane, and 
so the Finn-No11 theorem does not apply. 

In  the case of three-dimensional flow, the prescription of a uniform velocity at  
infinity in a Stokes flow gives a well-set problem, for Finn & No11 (1957) have 
demonstrated the uniqueness of such a flow about a body whose surface is com- 
posed of a finite number of piecewise smooth non-intersecting simple closed 
surfaces. See also Odqvist (1930). 
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In this paper we propose to consider the solution of the Stokes flow problem for 
axially symmetric bodies with the aid of the generalized axially symmetric 
potential theory initiated and developed by Weinstein (1948, 1955) and his 
co-workers (Huber 1953; Hyman 1954; Payne 1958). After the formulation of the 
problem and a general discussion of the techniques employed in its solution, we 
restrict our discussion to simply connected regions (in a meridional plane). We 
first obtain a general expression for the drag of the simply connected axially 
symmetric body, and then solve the Stokes flow problem for the general lens- 
shaped body. Some interesting special cases of this body are discussed. As 
examples of the method, some previously solved problems are discussed briefly. 
Finally, a table of the drag of various bodies in Stokes flow is given. 

2. Statement of the Stokes flow problem for axially symmetric bodies 
Consider a collection of n bodies which are individually axially symmetric and 

which are so arranged that the same is true of the aggregate of bodies. Let these 
be immersed at  rest in a uniform flow of a viscous, incompressible fluid which 
fills three-dimensional space, and let the axis of symmetry be parallel to the 
direction of the uniform flow (referred to as the free stream direction). We refer the 
flow to  cylindrical co-ordinates (2, r ,  0). The x-axis is chosen to lie along the axis 

FIGURE 1. The general configuration. 

of symmetry of the body with its positive direction the same as that of the free 
stream, r is radial distance from this axis, and 0 is an azimuthal angle defining 
meridional planes through the x-axis. In  view of the body-flow-co-ordinate 
configuration the co-ordinate 0 will play no role in our analysis, and we may 
restrict attention to any single meridional half-plane, as shown in figure 1, so that 
the range of co-ordinates is -a < x < co, 0 < r < co, and 0 < B < 2n. A meri- 
dional section of the bodies consists of regions bounded by two types of curves: 
(i) closed contours C;, i = 1,2,  . . ., 1, each of which lies entirely above the x-axis, 
and (ii) arcs C,, j = 1,2, ..., k (k+ I = n), which have termini A, and Bj, but no 
other points, lying on the x-axis (figure 1). The region of flow D is that portion of 
the meridional half-plane r 2 0 which is exterior to the regions enclosed by the 
C; and the C, + A,B,. The C, and C; are assumed to be made up of a finite number 
of smooth arcs, joined end to end. For brevity, we shall refer to a meridional 
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section of a body as ‘the body ’, and the bounding curve Ci or C; as its profile. The 
complete set of profiles constitutes the boundary of the set of bodies and is 
denoted by C. The complete boundary of the $ow region, however, consists of 
C together with those segments of the x-axis exterior to the set of A,B,, 
j = 1,2, ..., k. The velocity of flow at a generic point (x , r )  of D we denote by 
u(x, r )  = (u,(z, r ) ,  u,.(x, r ) ) ,  and the undisturbed (free stream) velocity by 
u, = (U,  0), where U > 0 is a constant. We assume that 

where 

lim u(x,r) = u,, 

p = (x2 + r2)). 

P+W 

Since the fluid is incompressible and the flow steady, the continuity equation 

divu = 0 inD. becomes simply 

The axial symmetry of the flow permits the introduction of a stream function @. 
Accordingly, we write 

1 a@ 1 a+ 
Tar’ rax’  

u. =--  u =--- (2.3) 

and the continuity equation is then of necessity satisfied. 
The vorticity vector < = curlu has at each point of the meridional plane the 

form (0, 0,6) and it is thus sufficient to deal only with the scalar 6. It is seen at  
once (Milne-Thomson 1950, p. 494) that 

and if (2.3) are inserted in this we obtain 

where 

The reason for the departure from the usual notation (Milne-Thomson 1950, 
p. 494) for this operator will be clear later. 

By a well-known procedure (Milne-Thomson 1950, pp. 507-9) the Navier- 
Stokes equations can be converted into the following equation for 6 in D: 

where Y = p/p is the kinematic viscosity. Substitution from (2.3) and (2.5) then 
permits us to write this in the form 

The Stokes assumption asserts that the first term of this is negligible in com- 
parison with the second, and we thus obtain for axially symmetric Stokes flow 
the equation 

to  be satisfied in D. 
LL1@ = 0 (2-9) 
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The kinematic condition of vanishing normal and tangential components of 
u at the boundary of an impermeable body at rest in a viscous fluid leads to the 
conditions @ = k, a constant, (2.10 u)  

_ -  - 0, w 
an 

(2.1 0 b)  

to be satisfied on each Ci and C;. We take n to be the unit normal on C directed into 
the fluid. In general, k will be different on different C;, although it will have the 
same value on all Ci. 

Finally, it is easy to see from (2.1) and (2.3) that @ must satisfy the condition 

lim $(x,r)  = &r2U 
P+* 

(2.11) 

(apart from an arbitrary additive constant which we have taken to be zero). 
In summary: the solution @(x, r )  of (2.9) subject to the conditions (2.10) and 

(2.11) solves the problem of Stokes flow for an axially symmetric body immersed 
in an infinite fluid whose velocity a t  infinity is parallel to the axis of the body. 

3. Representation of the solution of the flow equation 
We follow the usual procedure in solving boundary value problems: we obtain 

solutions of the differential equation (2.9) which seem suitable for our purpose, 
and construct therefrom by the well-known linear operations one which also 
satisfies the boundary conditions (2.10)-(2.11). The writers believe the problem 
considered here to have some novelty, however, inasmuch as the differential 
equation (2.9) is one which has received little attention and also because the 
solution given here constitutes an application of powerful methods recently 
developed by Weinstein (1948, 1955), Payne (1958), and other workers (as 
indicated below) in generalized axially symmetric potential theory. 

Let $ k ( ~ ,  r )  denote any solution of 

( - co < k < 00) in D which is regular on the x-axis outside of C .  We refer to @k as 
a generalized axially symmetric potential function. The behaviour of such 
functions in the neighbourhood of the x-axis has been discussed for all real k by 
Hyman (1954) and Huber (1953). It can be checked by direct substitution that 
the following functions are solutions of equation (2.9) for the stream function: 

(a )  r2$37 ( b )  xr2$3, ( c )  p2r21Cr3, (d )  r2$l, ( e )  r4@5. (3.2) 

Moreover, Payne (1958) has shown that in certain regions any solution of (2.9) 
can be represented as a linear combination of any two of the expressions (3.2). 
It may be surmised (and this will be verified in the examples we shall consider) 
that the optimal combination to be chosen as a solution for a specific problem will 
depend on the geometry of the boundary C on which (2.10) and (2 . lr)  must be 
satisfied. A combination suitable for one problem may be complekely intractable 
for another. In  fact, we choose quite different combinations in discussing the flow 
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about a spheroid from those used in the case of the lens-shaped region or separated 
spheres. 

In  the remainder of this paper we shall restrict our attention to the case in 
which only profiles of the type Cj occur. The connected curve formed by the 
C,, j = 1,2, . . ., k, and those segments of the x-axis exterior to the A,B, (figure 2) 

I 

FIGURE 2. Configuration for simply connected flow field. 

then form a streamline of the flow, and, in fact, constitute the boundary of D. 
Thus D is simply connected for this configuration. Since $ = 0 on the x-axis at  
infinity, it must remain so along the entire streamline above, i.e. on C and the 
x-axis exterior to the bodies. Condition (2.10b) holds on each C, and thus on C. 
Conditions (2.10) revised for the case under consideration are thus 

II. = 0, (3 .3a )  

on C. 
= 0, (3.3b) 

If bodies of type Ci occur, then D is multiply connected, and ( 3 . 3 ~ )  no longer 

It is convenient to write the stream function $ in the form 
holds. 

$ = $Ur2-$-, (3.4) 

and to formulate the problem in terms of $l rather than $. It is clear that p1 
satisfies the same differential equation (2.9) as $. In addition, it must give rise to 
a vanishing velocity at infinity, and fulfil the conditions 

= +Ur2, (3 .5a)  

on C. 

(3 .5b)  
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4. Drag on the axially symmetric body 

cylindrical co-ordinates, can be shown to be 
The drag on an axially symmetric body at rest in the flow, expressed in 

(see Milne-Thomson 1950, Q 19.21). 
We next show that this integral for the drag may be replaced by the expression 

-- P - lim P$ 2. 
8np p+m r2 

To this end we use the identity 

which can be obtained from the divergence theorem by a procedure resembling 
that used in deriving the symmetric form of Green’s theorem (see Weinstein 
(1948), equation (20)). The functions u and v, the region D* and its boundary C* 
are subject to the hypotheses of that theorem, and n is a unit normal to C* 
exterior to D*. 

We now set u = L-, $1, v = Ilrl, and apply (4.3) to the region D* whose complete 
boundary C* consists of (i) the arcs C,, (ii) a semicircle I’ defined by p = R, r > 0, 
where R is arbitrary save that all profiles Cj must lie within p < R, and (iii) those 
segments of the x-axis which lie between the termini of K’ and are exterior to the 
bodies. Since L?, $, = 0, we see at once that we then have 

Since @l is a solution of (2.9) it  follows from the significance of the notation that 
L-, $rl = $-I. We now make the plausible assumption that at  all points of C on 
the x-axis the velocity gradients are bounded. It then follows from equation 
(2.5) and the results of Huber (1953) and Hyman (1954) that G l ~ , i s O ( r 2 )  as 
r-+ 0 along the x-axis outside the body. Moreover, it is apparent from either the 
decomposition formula of Weinstein (1955) or those of Payne (1958) (which are 
valid in the neighbourhood of r = 0) and the results of Huber and Hyman that 
if $l vanishes at  00 on the x-axis and is analytic in a neighbourhood of a segment 
of the x-axis it must vanish as r2 there. From these remarks it follows that the 
integral on the right-hand side of (4.4) arising from that portion of C* which lies 
along the x-axis vanishes. We thus have 
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Since L-,(r2) = 0 and $1 is a solution of (2.9) we may use (4.3) to show that the 
integral over C* above vanishes, and we obtain the important result that 

From the decompositions (3.2) given by Payne it follows that we may write 

$1 = r " P  + $3) (4.8) 

in any region sufficiently far removed from the body. Since and 9b3 may, 
however, be regarded as axially symmetric harmonic functions in spaces of 3 and 
5 dimensions, respectively, (4.8) yields the representation 

( K  a constant) in the neighbourhood of p = co. Further, we may conclude from 

2r2K this that 
L-,$-, = --.--to(+) (4.10) 

P 

With this information we return to (4.7) and let R -+ co in that equation. This 
in the neighbourhood of p = 00. 

yields, since D* + D as R + co, 

or P = 8npK. (4.11) 

In  view of (4.9) K = lim p$Jr2, and we have therefore established (4.2). Wenow 

turn to the consideration of a specific flow configuration. 
P+m 

5. The flow about a lens-shaped body 
In  order to compute the flow about a lens-shaped body we introduce peripolar 

co-ordinates (Hobson 1931, pp. 422, 451) (c, 7) in the plane of the (2, r )  co-ordi- 
nates through the transformation 

In effect, this is a dipolar system of co-ordinates in which the family of co-axial 
circles nest about (0, b). These circles are the curves 7 = const., while the curves 
< = const. are arcs of circles joining (0, & b )  (i.e. arcs of the orthogonal trajectories 
of the circles 7 = const.). As before, we consider only the half-plane r 2 0. 



Stokes $ow for axially symmetric bodies 537 

The region bounded by the surface of revolution obtained by revolving two 
arcs 6 = &, and 5 = c2 about the x-axis is referred to as a lens-shaped region 
(figure 3). A lens-shaped body is thus one which occupies alens-shapedregion. The 
interior of the region is defined by 

0 < t1 < 6 < t2 < 27r (0 < 7 <a) 

g2 < 6 < t,+2n (0 < 7 < 00). 

II. = 0,) 

(5.2) 

(5.3) 

( 5 . 4 4  

and the exterior is then given by 

Accordingly, our problem is to find a solution of (2.9) which satisfies the 
conditions 

r 

( r ]  - -m) 

FIGURE 3. The lens-shaped body. 

Let t,, be a value of 6 such that 

We choose for @ a representation of the form 

61 < t o  < t 2 *  (5 .5)  

where F(a,  E) 5 cos€JA[a) Goshag +B(a) sinhat] 

+ sin g[C(a) cosh a< + D(a) sinh 4 1 .  (5.7) 

s = COSh7, t 3: C O S ~ .  (5.8) 

The functions A(a), ..., D(a) are to be determined by the boundary conditions, 
and 

After Hobson (1931, pp. 444-53), we denote the Legendre function of complex 
degree P,,-g(s), usually referred to as a conal function, by 

K J S )  = G,-&s). (5.9) 
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(5.10) 
d” 

K?’(s) = -P. ( s )  (n = 1,2,  ...) dsn Z a - 4  

will also be used. 
The condition ( 5 . 4 ~ )  leads to the equations 

SomE”(a,2n+t1)K$)(s)da = [ s - t l ] -4 - [~ -cos (~1-~0) ]~~  (5.11a) 

jomF(a,<2)K$)(s)da = [s-t2]-4- [ ~ - C O S ( < ~ - ~ ~ ) ] - ~ ,  (5.11b) 

where ti = costi, i = 1,2.  
From the integral definition of the conal function Ka(s) given in Hobson (1931, 

p. 451), and the subsequent discussion given there, it  can be shown that the 
expansion 

(5.12) 

is valid for 0 < t < 2n. Further, by differentiation and a permissible interchange 
of order of this with the indicated integration, we obtain 

(5.13) 

Both members of this are now multiplied by sin < and the result integrated from 
c = tl to 6 = 2n - (to - tl). We obtain the representation 

K!’(S) 
[s - cos (El - to)]” - [s - t l ] -4 = 4 2  __ s 0 (a2 + 1) cash 017~ 

x (COS $1 cash a(c1- n) - cos (60 - c1) Gosh a(n - t o  + (1) 

- &[sin el sinh a(& - n) + sin (to - El) sinh a(n - to + el)]} da (5.14) 

for 0 < < to. By an entirely similar procedure we find that 

x {a sin c2 sinh a(& - n) - a sin (t2 - to) sinh a(k2 - fl, - 71) 

- COS t2 cosha(t2- n) + COB (& - (0) COS~CL(&- &-n))da (5.15) 

for to < c2 < 27r. We may now replace the right-hand members of ( 5 . 1 1 ~ )  and 
(5.11b), respectively, by (5.14) and (5.15), and we are then led to the equations 

+ a sin 5, sinh a(tl - 7r) + cos (to - &) cosh a(n - to + el) 
-costl cosha([1-n)} (5.16) 

for 0 < c1 < to, and 

d A  {a sin c, sinh a(g2 - n) - a sin (6 ,  - to) sinh a(& - to - n) 
*‘(a,c2)  = (m)x 



Stokes $ow for axially symmetric bodies 539 

From the second boundary condition (5.4b) we obtain, assuming that (5.11 a) 
and (5.11b) are satisfied, 

- 42 
= (a2 + 1) cosh an ‘ 

aF a 
/om Kz’(8) a (a, f 2 )  da = {[8 - t 2 ] d  - [s - cos ( f 2  -50)]-4}. (5.19) 

If (5.14) and (5.15) are now inserted in (5.18)-(5.19), the differentiation and 
integration which occurs in each of the resulting equations may be interchanged, 
and we obtain finally 

a t 2  

- a[sin E sinh a(f - n) -sin (f - g o )  sinh a([- to + n)] 
(0  < E < f o h  

cos f cosh a(f - n) - cos (f - f o )  cosh a([- f o  - n) 
- a[sin sinh a(f - n) -sin (f - to) sinh a(5- fo  - n)] 

“ {sin (to - f l )  cosh a[n - fo  + El] +sin t1 cosh a ( f l  - n)} 
aF 
- (a, El + 2n) = ____ 
351 cosh an 

(5.20) 
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and it is easy to show that this is < 0 if a > 0. For a = 0 , s  does vanish, however, 
and Cramer's rule cannot be used, but we shall see later that this is a limiting 
case which causes no difficulty. The calculation of A ,  . . . , D is nothing more than 
a formidable exercise in algebraic manipulation, and will be omitted. We give 
merely the result of inserting these quantities in (5 .7) :  

9 cosh an- 

1 
a2+ 1 

+ a[& cosh a(7 - n-) -A, cos 7) sin (5, - f )  sinh a(c2 - E )  
+ (A, cosh a(7 - 277) -A, COB 7 )  sin (f2 - f )  sinh a (6, - f + an)] 

- sinh a(7 - 2n)  [cos ( f ,  - f )  sinh a(f2 - f )  - cos ( f z  - f )  sinh a(& - 5 + 2n)l) 

-a sin 7[r1 sin (f2 - E )  sinh a(f, - 6 + 2n) - r2 sin (El - 6) sinh a(f2 - c)] 
+ sinha(7-2n) [r,sin(f,-f)sinha(f2-() 

- r2 sin ( Ez - E )  sinh a( El - f + Zn-)], 

F(a,  f )  

{a2 sin [A, sin (c2 - f )  cosh a([, - f -  2n) - A, sin (6, - 6 )  cosh a(& - c)] 
J2 
- -- 

(5.27) 

where 7 = t2-f1, and 

1 1 
A .  = -(a2+l)g(a,fi)coshan-, ri = -g'(a,&)coshan- (i = 1,2). 

(5.28) 

Here and elsewhere in this section the symbol ' indicates differentiation with 
respect to 6. 

As noted earlier, A ,  . . . , D, and hence F ,  are not defined for a = 0. Examination 
of (5.27) reveals, however, that lim F(a,  f )  is finite, so that the singularity of the 

integrand of (5.6) at a = 0 is removable. 

' J 2  J 2  

U-+O 

6. Particular lenticular configurations of interest 

In  this case f ,  = Qn-, f,, = Qn-, f 2  = n-, and we have 

(sinh2#na - a2) cosh an-F(a, 6 )  

(a) The hemisphere 

1 
x sinha(n-f) -N(a )  [-cosha(n--f) a2 

+ rs) cosh #n-a -a&(..) - cosh $n-a sinh Qn-a sinh a (gn- - f )  1 

= cos f ( r*) cosh #na - &(a) sinh+n-a - a cosh Qna 
a2+ 1 

I1 +sinh#n-asinha(en-t) 

+ sin f (  M(a) [sinh Qna sinh a(n- - f )  + a2 cosh a(gn - f ) ]  
a2+ 1 

(6.2) 

where M ( a )  = cosh fn-a + a(sinh @a - 4 2  sinh Qna), 

N ( a )  = 4 2  + cosh Sn-a +a sinh Qna, 

&(a) = cash 2n-a + J2 Gosh 4n-a. 
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It is hardly necessary to point out that much of the complexity (and little of the 
symmetry) of the general case is still present in this example. This is not sur- 
prising in view of the complex body shape considered. 

(b)  The  symmetrical (bi-convex) lens 

In this instance, if < = tl is one face of the lens, then the other is 5 = f;, = 2n - &, 
and to = n. We find that (5.28) and (5.23) with these values give 

A, = A, = - 2 cosh Qan[cos tl cosh a([, - Qn) - a sin gl sinh a(& - +r)], 

rl = - I?, = 2 cosh Qan sin [, cosh a(& -in), 
F ( a ,  &, c,) = a, sin2 2(, - sinh, 2at17 

(6.3) 

(6.4) 

and, after some manipulation, the specialization of (5.27) for this case can be 
written in the form 

4" ____ 'Osh an F(a,  5) = cos 6 cosh a( 2n - 5) " [sinh a&( - cos g1 sinh Zat, 
242 

+ @a sin El) + a, sin kl sin 26, cosh a[,] - r,Y sin g1 sinh aE, 

+ sin 6 sinh a(2n - [) 

+ a2 cos [, sin 2(, sinh ac,] - F l y  cos <, cosh atl 

[cosh &,(sin El sinh 2 4 ,  + @a cos c,) 
(6-5) 

where @(a7 gl) = cos - cash 2 4 1 ,  

Y (a, 5,) = a sin 26, - sinh 2a[,. 

Still further simplification can be achieved by noting that Y is a factor of 9 and of 
the coefficients of the A, terms. Removal of these common factors yields 

1 

= cos 5 cosh a( 277 - 5) [ 
a2+ 1 

" (a cos 6, sinh a& - sin c1 cosh ag,) - rl cos 6, cosh a<, . +sin5 sinha(2n--5) ____ 

- cosh an(a sin 2& + sinh 2a&) P(a, () 
242  

1 
I 

(a sin 6, cosh a$, + cos tl sinh a5,) - I?, sin 6, sinh a& 

\a2+ 1 

(6.7) 
A further specialization of interest is obtained by setting & = Bn, which gives 

the sphere. In  this case A, = A, = 0, and rl = - r2 = 2 cosh (+an), It is easily 
checked that 

and the integral in (5.6) then becomes 

If we make use of the representation 

sin au du 
n (coshu-s)* 

(6.10) 



542 

and the discussion of pp. 451-3 of Hobson (1931), it  can be shown that 
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(6.11) 
“ K a s  ( c o s i a n  

cosh an 
______ ( -(5)da ( O < & $ <  2n). 

Differentiation of this and a permissible interchange with the integration on the 
right then yields 

(n < (5 < 377). (6.12) 
.KL1)(s) cash a( 277 - (5) da  

I 0  cash an ( s  + t)” = 
1 -~ 

2 4 2  

Thus (5.6) reduces to 

and, since ( p / b ) 2  = (s +t)/(s - t ) ,  we obtain 

Ur2 
2 

which is the solution for the sphere given by Lamb (1945, p. 598). 

(6.13) 

(c)  The calotte, or spherical cap 

If l2 = tl (=  lo), the two bounding surfaces of the lens coincide, and the body 
becomes a portion of a spherical surface bounded by a circle of latitude. This is 
called a calotte, or spherical cap. As to goes from in to n the cap goes from a 
hemispherical surface of radius b to a flat disk of radius b. Cases 0 < to < &n are of 
less interest. An approximation to the former type of body is found in the cup of 
the meteorologist’s anemometer. 

In  this case the procedure used in obtaining the equation (5.27) for F(a,  5) is 
invalid. Nevertheless, this formula, with A ,  . . . , D as determined there holds in the 
limit as E2 --f t1. To show this the expression [s - t]-* - [s - cos ((5 - (5,)]-4 is repre- 
sented by (5.15) for E0 < (5 < 2n and by (5.14) with El replaced by el - 2n for 
277 < 6 < 27~+(5~.  In  either case the resulting integral is combined with that 
appearing in (5.6). The result is a form of $ which is valid near the peak of the cap, 
i.e. in the neighbourhood of the point (c  = to, 7 = 0) at which the x-axis pierces 
the cap. 

We give the details of this process only for the case of the hemispherical cap. 
This is defined by c2 = El = to = ijn, and we have 

lo 

With the values of A, and ri which these give, (5.27) then yields 

F(a , ( )  = -__--___ - J2 (a2 cos (5 cosh a(n - (5) 
(a2 + 1) cosh2 an 

(6.15) 

+ a[cosh an cos (5 sinh a($. - (5) + sinh &an sin (5 cosh a(Qn - (5)] 
+ cosh a(Qn - (5) [cosh $an cos (5 - cosh an sin [I). (6.16) 
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We may write (5.6) for tZ = +n in the form 

$ = +Urz(s-t)* [ (s-t)-~--(~-sin~)-*-/~~~(a,~)K~~(s)da] (6.17) 

and making use of (5.6) and (5.14), respectively, as indicated in the preceding 
paragraph, 

(s - t)-4 - (s - sin c)-* 
00 Kc)(') {sin c[a sinh a(n - [) + cosh a(#. - t)] 

= -" jo (a2 + 1) cosh an 
+cost[asinha(&--f)+cosha(n-~)])da (in < [ < Zn), 

(s - t)-* - (s - sin t)-$ 

= --2/2/ 
O0 Kk"(s) 

{sin [[a sinh a(3n - 5) - cosh a(gn - t)] 
0 (a2 + 1) cash a.7~ 

+ c o s ~ [ a s i n h a ( ~ n - ~ ) + c o s h a ( 3 n - ~ ) ] } d a  (2.71. < 5 < in). (6.18) 

The insertion of these and (6.16) in (6.17) yields 

$ = Bur2 (s - t)* ___ K'l'(s) jOm (a2 + 1) cosh an 
{a2 cos [ cosh a(n - 6) + sinh a(+n - 5) 

x [sinh +an cos 5 - a cosh +an sin f ; ] }  da (6.19a) 
for +n < 5 < 2n, and 

$ = +Urz (s-t)* /a K'l)(s) {a2 cos 6 cosh a(n - 5) 
0 (az + 1) cash 

- sinh a(gn - t )  [sinh #an cos [ + a cosh #an sin [I} da (6.196) 
for 2n < 5 < gn. 

Because of the formal nature of the operations yielding (6.19) it must be 
verified that the $ thus defined is actually the solution of the cap problem. This is 
found to be the case. It is clear that $ does not exhibit a singularity at the point 
where the x-axis pierces the cap. 

7. The flow about a pair of separated spheres 
The curves = const. defined by the transformation (5.1) constitute a family 

of circles in the xr-plane whose centres lie on the x-axis. All circles 7 > 0 lie 
entirely within x > 0 and enclose (6, 0); those for which 7 < 0 lie entirely within 
x < 0 and enclose ( - b, 0). Rotation of these curves about the x-axis yields a 
family of spheres similarly characterized by 7 2 0. 

> 0 and 7 = q2 < 0. It is clear that 
neither lies in the interior of the other and that they have no points in common; 

We consider two spheres defined by = 

we refer to them as separated spheres (figure 4). The region exterior to both is 
defined by 

(7.1) v z  < 7 < 71 (0 G 5 < 2n). 

In order to solve the Stokes flow problem for the region (7.1) we seek solutions 
in of (2.9) which are periodic in [ of period 2n. We choose a decomposition for 

(3.4) to be a sum of (a), ( b )  and (c) of (3.2), so that 

$ = i U r 2 [ 1 - ( p 2 + b 2 ) $ 3 - x $ 3 ] .  (7.2) 
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It is then easy to see that a suitable $ is 
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m 

n=l 
9 = Bur2 1 - (s - t )& C [Aren? cosh 7 + Bne-”7 cosh 7 

+ cn enq sinh 7 + 6, e-nv sinh 71 P:)(cos t)) (7.3) 

{ 
which, by a redefinition of constants, can be written as 

+Dne-(n-l)v] P:)(cos() . (7.4) I 

FIGURE 4. Separated spheres. 

I n  order to satisfy the boundary conditions on 7 = ql and y2 we recall the well- 
known expansion formulas (Hobson 1931, p. 335) 

We now differentiate (7.5a) with respect to t ,  multiply both sides of the result by 
sinh 7, and integrate with respect to 7 from ql ( > 0 )  to co. In this way we obtain 

and in a similar way find that 

With the aid of these results we now see by reference to (7.4) that the condition 
that 1c. should vanish on 7 = v1 and q2 will be satisfied if we choose A,, . . . , D, to 
satisfy the relations 

An e(n+l) vi + Bn e(n-1) qi + en e-(n+l) qi + D e-(n-Uvi n 
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The second boundary condition, that a$/an = 0 on 7 = rl and yz, can be easily 
shown to reduce to 

and hence will be satisfied if 

( + 1) Q, e-(n+Uvi - (n - 1) D e-(n-l)qi (n + 1) A ,  e("+l)vi + (n - 1) B, e("-l)vi - n n 

= ( -  l ) i3J2  [e-(,+4)lvil-e-(,-3)Ivii] (i = 1,2).  (7.9) 

Equations (7.7) and (7.9) constitute 4 equations for the determination of the 
constants An, . . . , D,, and hence the solution of the problem. We leave the problem 
at this point, since the solution has been given, although in somewhat different 
form, by Stimson & Jeffery (1926). 

8. The flow about a spheroid 
The soIution of the Stokes flow problem for the prolate and oblate spheroids are 

implicit in the results of Oberbeck (1876) for the general ellipsoid. Since these 
problems furnish, however, striking examples of the ease with which problems can 
be solved by judicious choice of the representation formula for $, and since the 
results have a simpler form than that given by Oberbeck, the authors feel 
justified in sketching briefly the solution for these bodies by the methods of this 
paper. 

FIGURE 5. (a) Prolate spheroid. (b) Oblate spheroid. 

(8.1) 
The transformation 

z = coshc (C > 0) ,  

where z = x + ir  and 5 = (+ i7, serves to introduce elliptic co-ordinates in the 
xr-plane, line segments ( = to = const., 0 < 7 < n, of the plane being mapped 
into the upper halves ( r  3 0) of confocal ellipses in the xr-plane, with foci at 
( & c, 0). Rotation of such a curve about the x-axis generates a prolate spheroid 
(figure 5a) whose exterior is defined by 

5 > .go (0 < 7 < n). (8.2) 

(8.3) 

We represent the solution of the differential equation L?,$r = 0 in the form 

$ = iUr2-$l = +Ur2(1-$1-$3). 
35 Fluid Mech. 7 
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It is easy to  see (Hobson 1931, p. 413) that &,&(s)P,(t) and &(nl)(s)P$(t), 
n = 0 ,1 ,2 ,  . . . , where s = cosh <, t = cos 7, are, respectively, functions $1 and $3 

which are regular in the region (8.2). Thus, at least formally, we may choose 

From the condition that a$/aq vanish on 5 = co it  follows at once that we must 

A,  = 0, A,, Bn = 0 (n 2 2), have 

and hence that 

If we insert in this the expressions for P,(t) and Qn(s), n = 0, 1, and relabel the 
coefficients, the result is 

+ = iUr2{1- A,P,(~)  ~ ~ ( 8 )  -B ,~p( t )  ~p(8 ) ) .  (8.5) 

The boundary conditions (3.3) now serve to determine A and B, and we find that 

), (8.7) 
s(st - l)/(sg + 1) -&(sf + 1 )  In (s + l)/(s - 1) 

so- &(sg + 1) In (so + l)/(so - 1) 
$ = i U r z ( 1 - -  

where so = cosht,. 
An easy calculation shows that the drag is 

-1 

(8.8) 

x = csinhc (c > O), (8.9) 

P = 877p lim P@l - = 877 Uc,u[$(sg+ l)ln--so] so+ 1 . 
p-- rz so- 1 

The transformation 

yields oblate spheroids. The segments 5 = to = const., 0 < 11 < T, of the c-plane 
are mapped into the halves of confocal ellipses with foci a t  (0, & c) lying in r 2 0. 
The rotation of such a curve about the x-axis generates an oblate spheroid 
(figure 5 b )  whose axis coincides with that of x. The exterior of the spheroid is 

(8.10) 
given by 

Again we represent the solution of (2.9) in the form 

t > t o  (0 11 < 77.). 

$ = +Urz-$l = 4u~~(1-$1-@3). (8.11) 

In this case we find (Hobson 1931, p. 422) that ~n(~)Q,(i~) and P;)(t)@(i7), 
n = 0 ,1 ,2 ,  . . ., where 7 = sinh t and t = cos 7, are, respectively, functions $1 and 
$3 which are regular in (8.10). We may thus assume $ to have the form 

By a procedure similar to that used in the preceding case we find that the $which 
also satisfies the boundary conditions, and thus constitutes the solution of the 
problem is 

= iur ' (1-  (8.13) 

where T~ = sinh&. 

7( 1 + Tg)/ (  1 + 7') + (1  - 78) Cot-' 7 

70 + (1 - 7 3  cot-1 To 
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The drag is found from (4.2) to be 

P = ~ ~ , L ~ U C [ T ~  + (1 - 78) Cot-' 701-l. (8.14) 

The caae of the flat circular disk is of particular interest, and is the special case 
of (8.12) obtained by setting T~ = 0. Accordingly, 

(8.15) 

and the drag is P = l 6 p U ~ .  (8.16) 

It is not immediately obvious that (8.7) and (8.13) yield the same results as 
were obtained by Oberbeck, since he eschews the use of both the stream function 
and velocity potential, and deals directly with the velocity components, ex- 
pressing them in terms of the gravitational potential of the ellipsoid and related 
integrals. For the ellipsoid of revolution, these integrals reduce to types which 
can be easily evaluated and the authors have done this to verify that in such case 
Oberbeck's formulas reduce to (8.8) and (8.14). The result (8.16) for the disk was 
also obtained by Oberbeck. 

We note, finally, that for c fixed and go large, both spheroids closely approxi- 
mate a sphere of radius &c eta, and it can be shown, as one would expect, that both 
(8.8) and (8.14) become approximately 6npU(iceto), the drag of a sphere of 
radius & e 4 .  

9. The drag problem for the lens 
The drag of the axially symmetric body is given by (4.2). In the case of the 

lens-shaped body consists of the last two terms of (5.6), where F(a,[ )  is 
obtained from (5.27)-(5.28). The evaluation of the formidable expression which 
results we will not attempt. The bi-convex lens, because of symmetry, gives an 
integral which is considerably simpler, but still requires several numerical 
integrations which the authors have not carried out. There is, however, one 
special case of interest in which the drag can be computed,t viz. that of the 
spherical cap. From (6.17) we find that 

(9.1) 

and using (5.1) and (2.2) we have 

where 

P(a, 277) = - J2 -__ {a2 cosh an - a cosh an sinh +an + cosh2 #an] (9.3) 
(a2 + 1) cosh2 an 

and K?)(l) = -+(a"+) (9.4) 

f Another such special case is the sphere, treated by Stokes. See $6 above, and the 
reference given there. 

36-2 
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(Neumann 1881). Thus we find that 
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da - som sech an da 
a sinh &an 

a2sechanda-4 -- so coshan 

* sech an- * a sinhian 3 *sechZan I0 - coshan - 2 s o  - + 2IOm sech2 anda + d a + 3  
Jo a2+1 

(9.5) 

These integrals are all available in Bierens de Haan (1939), except for the last one. 
It can be evaluated in closed form by a contour integration and subsequent 
summation of a series which we will omit. We then obtain for the drag 

P = 4 J2npbU -+--- = 17.525Ubp. “d : $1 
This is somewhat in excess of the value l6Ubp which was obtained for the flat 
disk in the last section. 

Body Drag 

Hemispherical cup 4JZnpbU 

Flat disk 16pb U 
Sphere 6npb U 

Prolate spheroid 8npbU *(s:+ 1) log- -.so 
so+1  go- 1 I-’ 

Oblate spheroid 8npb U[(  1 - 7:) cot-l T, + TO]-’ .~ 

4sinh* (12 + 4) 01. - (2n + l)’&h*O1. 
2~inh(212+ l)01.+(2n+l)~inh01. 

Two identical 
spheres 

TABLE 1 

Table 1 has been prepared to permit easy comparison of the cup drag with 
that of the other bodies which we have discussed. In every case b is the 
radius of the frontal area circle; so and 70 are defined in $8, and a = cosh-ld, 
where d is the ratio of the distance between centres of the circles to their diameter. 
The result for the two spheres is taken from Stimson & Jeffery (1926). It will be 
noted that the drag of the hemispherical cup lies about midway between that of 
the flat disk and the sphere. Calculation also shows that the drag of the oblate 
spheroid always lies between that of the disk and sphere, and the drag of the 
prolate spheroid is always greater than that of the sphere. 

This work was done a t  the National Bureau of Standards while Dr Payne 
was engaged as a consultant there, and was supported by the the U.S. Air Force, 
through the Office of Scientific Research of the Air Research and Development 
Command. 
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